INFORMATION WORKS!

Technical Brief on the Statistical Model Used in the 2006 Rhode Island School and District Reports (School Year 2004-2005)

By

Dr. Nina Kajiji*
Assistant Professor of Research
National Center on Public Education and Social Policy

* National Center on Public Education and Social Policy at the University of Rhode Island, 80 Washington Street, Providence, RI 02881.

Acknowledgements: Lynda Hurditch, Education Specialist, NCPE, for her editorial comments, and Dr. Minsuk Shim and Dr. Dennis Cheek for their initial contributions.
Across the nation, politicians, educators, and parents have become deeply concerned with finding ways to measure the effectiveness of schools and school systems. There is statewide agreement in Rhode Island that all students need to attain high standards of achievement in mathematics, reading, writing, health as well as other school subjects. To ensure that there is a measurable progress in the core subjects, the State administers the New Standards Reference Examinations developed by Harcourt Educational Measurement and state-developed tests in writing and health. The proficiency results are reported to the general public through an annual publication called *Information Works!*

1. PURPOSE

The main purpose of *Information Works!* is to present an overview of the school in five basic categories: past and present academic achievement, demographics, school specific highlights, selected school indicators, and a summary of the financial breakdown for the school. The goal is to provide school-related content that would enhance public understanding of the school and the widely varying circumstances within which the school, its staff and students operate. The ultimate goal of *Information Works!* and the School Accountability for Learning and Teaching (SALT) is to assist each school in its efforts to improve student achievement by providing measures that focus on getting all students to the desired level of proficiency. *Information Works!* summarizes the information that schools need when developing their strategic planning and school improvement initiatives.
2. MOTIVATION

Politicians and educators have struggled with the idea of developing useful yardsticks for school effectiveness that are honest, accurate and easy to comprehend. The initial stages of this effort often ignored the varying degree to which the social and political factors affected schools in various districts. Schools were frequently measured by a small set of benchmarks that often had no universal applicability. In other words, benchmarks were being used to rank order districts and schools as if the schools were competing on a level playing field. The rank-ordering yardstick by itself is not sensitive to differences in a school’s environment, its practices, or to its achievement results that are not part of the formal state assessment program. To help alleviate some of the problems in viewing raw achievement results, the researchers at the Rhode Island Department of Education (RIDE) and the National Center on Public Education and Social Policy (NCPE) at the University of Rhode Island have devised a statistical model that attempts to address some of the differences in school composition. The remainder of this document is devoted primarily to the understanding of the statistical model – one of the key components of Information Works!

3. PREDICTORS OF STUDENT ACHIEVEMENT

Studies\(^1\) show that family background characteristics are closely related to student achievement. Schools with less economically privileged students, for example, almost always have lower achievement scores. This trend is also evident in Rhode Island. When Rhode Island ranks their state test results, the results closely mirror the socioeconomic status (SES) of the district. Thus, high-income districts have higher number of students meeting or exceeding the standards than low-income districts. Changes in many other characteristics (variables) have also been shown by research studies to correlate closely to student achievement. These variables include:

1. Prior achievement or aptitude
2. Participation in free or reduced lunch programs
3. Minority status
4. Educational level of the mother
5. Father’s occupation
6. Family income
7. Number of siblings
8. Students receiving special services (e.g., special education, bilingual or ESL education).

Additionally, other macro-economic variables such as school settings (urban, rural, suburban), per pupil expenditure, policies and practices within schools or school districts, and community characteristics (for example, job market, tax support, etc.) also seem to affect student achievement.

4. THE RHODE ISLAND MODEL

Statisticians over the years have built increasingly sophisticated models to relate the various factors presented above. One of the most powerful of these methods is hierarchical linear modeling (HLM). When applied to schools, HLM considers characteristics of a school as well as the characteristics of individual students. Researchers at NCPE attempted to use HLM but ultimately rejected it as an approach because the sets of schools that look similar to each other are too small to yield reliable results. The NCPE research team thus used hierarchical regression analysis, which is a specialized form of multivariate analysis.

Details on the statistical terminology used in the Rhode Island Model are presented in Appendix A.

4.1 The Outcome (Dependent) Variable

The outcome variable, or the variable to predict, is the student’s academic achievement in each subject area across different grade levels. Researchers employed a separate hierarchical regression model for each subtest in each subject area (Mathematics, and English Language Arts) for all of the Rhode Island high schools which had a grade 11. Grade 11 was the only tested grade in the academic year under study. The percentages of students who achieved proficiency or were above the proficiency level were computed and used as the outcome (dependent) variable.

4.2 The Explanatory (Independent) Variables

Five explanatory variables known to relate statistically to student achievement on state tests are collected annually from Rhode Island schools and districts. These variables are:

1. The percentage of students within a school eligible for free or reduced lunch
2. The percentage of minority students (i.e., non-white) within a school
3. The percentage of students whose most educated parent has at least some college education
4. The percentage of students in a school enrolled in ESL or bilingual education programs
5. The percentage of students within a school receiving services under special education law

Because of the small number of schools in Rhode Island, comparisons were made among all schools in the state for the given grade level rather than at a district level. Research has shown that some or all of these variables may be highly correlated.

4.3 A Glimpse Into The Rhode Island Data

A descriptive analysis for the Rhode Island data is presented in Table 1. Table 2 presents the correlation results between the set of explanatory variables. Table 3 presents the correlation results between the response variable and the set of explanatory variables. Table 4 presents the results of the hierarchical regression analysis.

4.3.1 Descriptive Analysis

Table 1 shows the descriptive statistics for the seven response variables (assessment subtests)
and the five explanatory variables that will be investigated in the development of the RI school model. Specifically, the information shows the minimum and maximum value for the variable (range), mean (arithmetic average), and standard deviation (a measure of dispersion).

Analyzing the information in Table 1, we find that among the five explanatory variables the highest variability (standard deviation) exists in the percentage of minority students enrolled in a grade 11. The lowest variability exists in the percentage of students enrolled in special education. When analyzing the seven response variables it is interesting to note that the variability is pretty even among the variables. The highest variability exists in the mathematics skills subtest but the mathematics concept and problem solving show the least variability.

4.3.2 Creating the Poverty Index Variable

All explanatory variables except % of Special Education students exhibit significant correlation. (See Table 2: Correlation Analysis). The variables were said to exhibit multicollinearity. In other words, when one variable shifts, the others also shift in the direction of their sign. For example, the % of Students Whose Parents Have At Least Some College Education and % Eligible for Subsidized Lunch and % Minority Students show a significant but negative relationship of at least 0.6. One of the remedies for multicollinearity is to group variables in blocks. Therefore, the researchers computed an equally weighted average of the following three variables: % Eligible for Subsidized Lunch, % Minority Students, and % Parents with at least some College Education. The first two variables and the last variable point in different directions, i.e., high % Free or Reduced Lunch and high % of Minorities indicate greater poverty, whereas a high % Parents with at least some College Education indicates less poverty. Therefore, one variable was reversed when computing the combined Poverty Index. A low value within the Poverty Index indicates greater poverty in a school and a high value indicates lower poverty.

4.3.3 Correlation Analysis

The Statistical Model presented, shows a very high correlation between achievement on selected state tests and all of the explanatory variables. This is presented in Table 3. The only exception
is the variable that measures the percentage of students in special education programs. For this variable, the correlations are not significant at the 95% confidence level. In other words, there is no evidence of any correlation between the special education students and their performance on the state assessment tests.

4.3.4 Hierarchical Regression Analysis

After careful study of the correlation tables, a hierarchical regression analysis was performed. The results are presented in Table 4. The first variable to be entered in the model is Poverty Index. We then added in the variable that measured the percentage of students in LEP programs. The variable that measures the percentage of students in the special education programs was entered next into the regression. (For a quick overview on Hierarchical Regression see Appendix A7.3). In the Rhode Island Statistical Model, we used the Poverty Index first because it accounts for the most variation in student achievement among the three variables. Research with several Hierarchical Models suggested that the next most important variable was % Students in LEP. The residual variance was picked up by % Students in Special Education programs. The researchers are aware that some students within a school receive both types of services and would be “counted” twice in this model. Students with multiple learning needs require more support, which in turn factors into the cumulative effects of multiple challenges.

Table 4, presents the results from the hierarchical regression. Across all grade levels, the Poverty Index variable explains most of the variation in student achievement. The negative sign of the coefficient gives further credence to the fact that schools with more economically disadvantaged students have lower student achievement across all subject areas and grades. The residual variation (variation not explained by the Poverty Index) is then explained in part by students in LEP programs and students receiving special education services. These two variables rarely have significant effects on student achievement as indicated in Table 4. The last column of Table 4, represents the proportion of variation (r-square) in student achievement scores that was “statistically” explained by the set of explanatory variables. For example, the model explains 76% of the variation in Reading: Analysis & Interpretation performance but only 52.6% of the variation in the performance of the Writing: Conventions.
5. **PREDICTING INDIVIDUAL SCHOOL PERFORMANCE**

The hierarchical regression models were used to create expected achievement scores. The information for each school is presented on *The Value-Added Indicators Field*. The researchers report on the percentage of eligible students who have met or exceeded the standard (shown in Figure 1 as the Actual Range) compared to the percentage of similar students statewide (shown in Figure 1 as the Sample Range). These expected scores, are based on school level data as described above. That is, the field provides a comparison between an individual school’s performance score that has been adjusted by the socioeconomic factors, and similar schools statewide. The researchers call this group of similar schools a “virtual school.”

Standard errors were also computed in addition to the specific point estimates for the expected scores. The point estimates combined with the errors generate a band within which we would expect individual school performance to lie. The band, shown in Figure 1 as the sample range, shows the 95% confidence interval for the predicted score. The larger the width of the confidence band the less likely the school is in representing a typical Rhode Island school. Conversely, the narrower the band the more representative the school is to the entire group.

![Figure 1: Sample of the RI Statistical Model as presented in Infoworks!](image-url)
APPENDIX A: STATISTICAL DEFINITIONS

The following few sections describe some general statistical terminology that is important for understanding the analysis presented in this Technical Brief.

A1. Definition of a Variable

A variable is a data / questionnaire item on which individual responses (observations) are obtained. Variables are categorized into two major categories.

- Response Variable: Is a variable whose outcome is being studied.
- Explanatory Variable: A variable that can explain the causal changes in the response variable.

A2. Descriptive Statistics

Descriptive Statistics is the collection, organization, analysis, and presentation of data. Table 1 presents some of the descriptive measures for the variables that will be used in Field 2: The Statistical Model. In column one, the table presents the number of valid observations (N) for each of the variables. The next column shows the minimum value for that variable in the data set. The third column shows the maximum value for the variable. The fourth column shows the arithmetic mean for the variable. Arithmetic mean is often called the average value. The last column shows the standard deviation for the variable. Standard deviation provides a statistical measure for dispersion around the mean. For example, Figure A1 shows the dispersion around the mean of three sample schools. The innermost curve corresponds to smallest dispersion (low standard deviation) around the mean the outermost curve corresponds to the most variability (high standard deviation).

![Figure A1: Example of Deviations Around the Mean](image)
A3. Correlation

Researchers find it convenient to have a single number to measure the strength of the relationship between two variables and to have that number be independent of the units used to make the measurement. The correlation between the response variables and the explanatory variables is shown in Table 2. The reader thus has a better idea of the predictive ability of a single explanatory variable on the response variable. Table 3, on the other hand, shows the interactions of the explanatory variable amongst themselves. The higher the absolute value of the correlation, the greater is the relationship between the two variables. A correlation of zero indicates that there is no positive or negative relationship between the two variables. A positive correlation value indicates that the variables increase together (Figure A2 shows a line with an upward slope – bottom left to top right). A negative correlation indicates that as one variable increases the other decreases (Figure A3 shows a line with a downward slope – top left to bottom right). A correlation of ±1 (or 100%) indicates that there is a perfect linear relationship between the two variables. Correlations of ±1 would be extremely strong relationships. These correlations are rarely observed when exploring relationships between different variables.

![Figure A2: Example of Positive Correlation between Two Variables](image-url)
A4. Correlation vs. Causation

Most statisticians know that “Correlation does not imply causation.” That is, even if two variables are related or correlated, they may not have any causal relationship between them. In other words, changes in one variable may not be directly caused by the independent operation of the other variable. One variable may fluctuate in relation to the other due to chance (coincidence) or both may be strongly affected by one or more confounding\(^5\) variables. Other possible reasons include both variables changing over time or when it is unclear whether there was causation or a contribution effect. In the absence of any other evidence, data from an observational study cannot be used to establish causation. However, a causal connection probably does exist if we can establish that: 1) there is a reasonable explanation of cause and effect, 2) the connection happens under varying conditions, and 3) potential confounding variables are ruled out. In the statistical model it is our intention to present the significant causal connection between a set of explanatory variables and a response variable.

A5. Statistical Significance

Researchers want to know and be able to say with some degree of confidence whether any relationships they have found between various types of data are different from relationships they

\(^5\) Confounding occurs when more than one variable affects the response variable and the effects of the variables cannot be distinguished from each other.
would find solely due to chance. A measure for the degree of confidence we have in a statistical relationship is called the *confidence level*. A confidence level of 95% and above is considered to have *statistical significance*. In other words, most researchers are willing to state that a relationship is statistically significant if the possibility of observing that relationship in the sample purely due to chance is less than 5%.

For interpretational reasons, statisticians generally present a *confidence interval* of a prediction. A *confidence interval* is the statistical lower and upper bound within which the predicted value will occur 95% of the time. 95% is the value of the confidence level. In *Information Works!* this *confidence interval* is represented as a band (sample range) on Field 2 of the school report. In essence, a school should expect the actual achievement score (presented as a heavy solid line) for a particular sub-test to fall within the band. If the actual achievement score is above or below the band it is assumed that the school achieved those results purely by chance. Of course, if the school consistently performs above or below the band in multiple years and/or in more than one test, this school requires further study. It is increasingly likely if the results hold over multiple years that the results obtained are not due solely to chance (i.e., random fluctuations) but represent “real” under or over achievement as compared to what was expected from the model.

A6. Simple Linear Regression

![Figure A4: Regression Line](image)

As mentioned in Section A3, the correlation coefficient measures the degree of linear relationship between two variables. However, it does not describe the exact linear association
between a response variable \((y)\) and the explanatory variable \((x)\); that role is played by regression analysis. Regression analysis helps us to determine whether a specific relationship exists between \(x\) and \(y\) thereby allowing one to use \(x\) to predict \(y\).

Figure A4\(^6\), shows the causal relationship of Spending per Student \((X)\) on the Per Capita Income \((Y)\). The original data is represented by dots. The line, often termed as the regression line, is obtained via the principles of Least Squares. As we know, given two points we can draw one line. Given, infinite points we can draw infinite lines. Thus, the problem of finding the best line through a set of points was solved using the Least Squares principle. The Least Square principle minimizes the deviations from the actual data points to a hypothetical line. This is shown in Figure A5\(^7\). The formula that defines the regression line is termed the regression equation.

\[y = a + bx \]

Figure A5: Regression Line with Deviations

A simple linear regression equation is written as: \(y = a + bx\), where \(y\) represents the values on the vertical axis (per capita income in our example); \(x\) represents the values on the horizontal axis (spending per student in our example); and \(a\) and \(b\) are parameters (values) obtained from the least squares solution. The intercept or “\(a\)” is the intersection point of the regression line with the vertical axis. The slope or \(b\) determines if there is a positive or negative relationship between \(x\) & \(y\). A positive slope, indicated by a positive value for \(b\), shows that for every unit increase in \(x\) the response variable \(y\) has an increase of \(b\) units. Conversely, a negative value of \(b\) indicates that for every unit increase in \(x\), \(y\) decreases by \(b\) units.

A7. Multivariate Analysis

The section above presented an overview of how one explanatory variable can predict the outcome of one response variable. However, in most daily scenarios it is unlikely that one explanatory variable is all one needs to build an effective model. The study of multiple explanatory variables interacting simultaneously to produce the outcome on one or many response variables is termed Multivariate Analysis. For the purposes of this Technical Brief, we will only address models with one response variable and more than one explanatory variables. The Rhode Island Statistical Model is based on one such technique -- Hierarchical Regression. As is shown in the following sections Hierarchical Regression is a variation of two other forms of analysis that we did not use: Multiple Regression and Stepwise Regression. A brief discussion on each of the three techniques follows.

A7.1 Multiple Regression

In a multiple regression model, sets of explanatory variables called independent variables jointly predict the outcome of the response variable or the dependent variable. All of the independent variables are specified simultaneously in the regression equation and the solution is obtained through a technique called Least Squares. The assumption is that all \(n \) independent variables \((x_i) \) together are necessary to explain the variation in the dependent variable \((y) \). The regression equation is written as:

\[
y = a + b_1x_1 + b_2x_2 + \ldots + b_nx_n
\]

Once again, \(a \) and \(b_i \) are parameters obtained from the least squares solution. The intercept or \(a \) is often termed as the constant term. Each \(b_i \) determines if there is a positive or negative relationship between a given \(x_i \) and \(y \). A positive slope, indicated by a positive value for \(b_i \), shows that for every unit increase in \(x_i \) the response variable \(y \) has an increase of \(b_i \) units. A negative slope indicated by a negative \(b_i \) value shows that for every unit increase in \(x_i \) the response variable decreases by \(b_i \) units.

A7.2 Stepwise Regression

In stepwise regression, the researcher assumes that the independent variables \((x_i) \) are correlated. The researcher simultaneously specifies all of the variables in the regression equation just like in
the Multiple Regression Model. However, the Stepwise procedure will systematically add variables that make a significant contribution to the explanation of the variation in y. The Stepwise procedure will also eliminate variables that are not significant from the equation. Thus, the final predication equation will have fewer independent variables. Stepwise regression does not address the economic or model building requirements. It simply adds and removes variables based on mathematical criteria.

A7.3 Hierarchical Regression

In hierarchical regression, the approach used in the RI model, a core set of m independent variables ($m \lt n$) form the basis of the regression equation. In essence these are forced into the model. The other variables are introduced one at a time in the model to see the incremental gain. Thus the order in which the variables are entered is important. The variable that explains the most variance is the better predictor of the variance in the dependent variable. For example\(^8\), if we know that IQ, age, and parents’ income predict a student’s ability to do math, we would like to investigate if Test A or Test B is the better predictor of a student’s test score. This model can be solved by hierarchical regression by first adding all known factors – IQ, Age, and Parent’s income -- into the model. Next we add the performance on Test A and Test B in every possible combination. The sample results are presented below:

\[
\begin{array}{|c|c|c|c|}
\hline
\text{STEPS FOR MODEL 1} & \text{R2 CHANGE} & \text{STEPS FOR MODEL 2} & \text{R2 CHANGE} \\
\hline
1. Age, IQ, Parents Income & 68\% & 1. Age, IQ, Parent’s Income & 68\% \\
2. Test A & 18\% & 2. Test B & 6\% \\
3. Test B & 4\% & 3. Test A & 16\% \\
\hline
\end{array}
\]

Table A1: Predicting Math Performance Using Hierarchical Regression

In this example, Test A accounts for more unique variation in math scores 18% or 16% compared to Test B which accounts for only 4% or 6% of the variation in math scores. Test A is thus considered to be a better predictor of math scores and should be selected in the model.

\(^8\) Example obtained from http://www.bath.ac.uk/~pssiw/stats/week40hp/sld012.htm
APPENDIX B: TABLES

Table 1: Descriptive Statistics for Key Variables Used in the Model

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skills</td>
<td>59</td>
<td>0.00</td>
<td>100.00</td>
<td>50.44</td>
<td>26.70</td>
</tr>
<tr>
<td>Concepts</td>
<td>59</td>
<td>0.00</td>
<td>77.00</td>
<td>32.81</td>
<td>22.86</td>
</tr>
<tr>
<td>Problem Solving</td>
<td>59</td>
<td>0.00</td>
<td>73.00</td>
<td>33.86</td>
<td>22.08</td>
</tr>
<tr>
<td>Reading: Basic Understanding</td>
<td>59</td>
<td>0.00</td>
<td>100.00</td>
<td>44.78</td>
<td>23.80</td>
</tr>
<tr>
<td>Reading: Analysis & Interpretation</td>
<td>59</td>
<td>0.00</td>
<td>80.00</td>
<td>37.27</td>
<td>23.18</td>
</tr>
<tr>
<td>Writing: Conventions</td>
<td>59</td>
<td>0.00</td>
<td>100.00</td>
<td>64.61</td>
<td>23.87</td>
</tr>
<tr>
<td>Writing: Effectiveness</td>
<td>59</td>
<td>0.00</td>
<td>76.00</td>
<td>36.41</td>
<td>20.53</td>
</tr>
<tr>
<td>% Eligible for subsidized lunch</td>
<td>59</td>
<td>0.00</td>
<td>96.00</td>
<td>31.51</td>
<td>27.48</td>
</tr>
<tr>
<td>% Minority Students</td>
<td>56</td>
<td>0.92</td>
<td>95.24</td>
<td>35.40</td>
<td>36.26</td>
</tr>
<tr>
<td>% Students in Special Education</td>
<td>59</td>
<td>0.00</td>
<td>65.00</td>
<td>14.17</td>
<td>11.64</td>
</tr>
<tr>
<td>% Students in LEP</td>
<td>59</td>
<td>0.00</td>
<td>100.00</td>
<td>4.31</td>
<td>14.39</td>
</tr>
<tr>
<td>% Parent Education</td>
<td>57</td>
<td>0.00</td>
<td>91.00</td>
<td>55.38</td>
<td>21.46</td>
</tr>
</tbody>
</table>

Table 2: Correlation between Explanatory Variables

<table>
<thead>
<tr>
<th></th>
<th>% Eligible for subsidized lunch</th>
<th>% Minority Students</th>
<th>% Students in Special Education</th>
<th>% Students in LEP</th>
<th>Poverty Index</th>
<th>% Students whose Parents Have at least some College Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 11</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Eligible for subsidized lunch</td>
<td>0.833**</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Minority Students</td>
<td>-0.110</td>
<td>-0.254</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Students in Special Education</td>
<td>0.492**</td>
<td>0.503**</td>
<td>-0.179</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Students in LEP</td>
<td>0.934**</td>
<td>-0.946**</td>
<td>0.049</td>
<td>0.543**</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Poverty Index</td>
<td>-0.679**</td>
<td>-0.678**</td>
<td>0.286**</td>
<td>-0.345**</td>
<td>-0.834**</td>
<td>1.000</td>
</tr>
</tbody>
</table>

** Significant at the 99% confidence level
* Significant at the 95% confidence level
Table 3: Correlation Coefficients of Student Characteristics to Student Achievement

<table>
<thead>
<tr>
<th></th>
<th>% Eligible for Free & Reduced Lunch</th>
<th>% Minority Students</th>
<th>% Students in Special Education</th>
<th>% Students in LEP</th>
<th>% Students whose Parents Have At Least Some College Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 11 Skills</td>
<td>-0.565**</td>
<td>-0.681**</td>
<td>-0.100</td>
<td>-0.369**</td>
<td>0.881**</td>
</tr>
<tr>
<td>Concepts</td>
<td>-0.629**</td>
<td>-0.714**</td>
<td>-0.098</td>
<td>-0.313*</td>
<td>0.874**</td>
</tr>
<tr>
<td>Problem Solving</td>
<td>-0.601**</td>
<td>-0.713**</td>
<td>-0.020</td>
<td>-0.341**</td>
<td>0.838**</td>
</tr>
<tr>
<td>Reading: Basic Understanding</td>
<td>-0.601**</td>
<td>-0.673**</td>
<td>-0.161</td>
<td>-0.360**</td>
<td>0.909**</td>
</tr>
<tr>
<td>Reading: Analysis & Interpretation</td>
<td>-0.656**</td>
<td>-0.756**</td>
<td>-0.100</td>
<td>-0.337**</td>
<td>0.901**</td>
</tr>
<tr>
<td>Writing: Conventions</td>
<td>-0.441**</td>
<td>-0.549**</td>
<td>-0.176</td>
<td>-0.420**</td>
<td>0.860**</td>
</tr>
<tr>
<td>Writing: Effectiveness</td>
<td>-0.580**</td>
<td>-0.650**</td>
<td>-0.119</td>
<td>-0.342**</td>
<td>0.857**</td>
</tr>
</tbody>
</table>

** Significant at the 99% confidence level
* Significant at the 95% confidence level

Table 4: Hierarchical Regression Results

<table>
<thead>
<tr>
<th></th>
<th>Constant</th>
<th>Poverty Index</th>
<th>% Lep</th>
<th>% Special Education</th>
<th>R-Square (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 11 Skills</td>
<td>89.122**</td>
<td>-0.803**</td>
<td>0.057</td>
<td>-0.530**</td>
<td>65.5%</td>
</tr>
<tr>
<td>Concepts</td>
<td>67.281**</td>
<td>-0.761**</td>
<td>0.239</td>
<td>-0.415**</td>
<td>70.1%</td>
</tr>
<tr>
<td>Problem Solving</td>
<td>63.644**</td>
<td>-0.688**</td>
<td>0.008</td>
<td>-0.245</td>
<td>64.7%</td>
</tr>
<tr>
<td>Reading: Basic Understanding</td>
<td>81.934**</td>
<td>-0.749**</td>
<td>0.184</td>
<td>-0.596**</td>
<td>69.8%</td>
</tr>
<tr>
<td>Reading: Analysis & Interpretation</td>
<td>73.600**</td>
<td>-0.802**</td>
<td>0.279</td>
<td>-0.438**</td>
<td>76.0%</td>
</tr>
<tr>
<td>Writing: Effectiveness</td>
<td>66.235**</td>
<td>-0.614**</td>
<td>0.135</td>
<td>-0.435**</td>
<td>61.8%</td>
</tr>
<tr>
<td>Writing: Conventions</td>
<td>97.502**</td>
<td>-0.581**</td>
<td>0.187</td>
<td>-0.678**</td>
<td>52.6%</td>
</tr>
</tbody>
</table>

** Significant at the 99% confidence level
* Significant at the 95% confidence level

Standard Deviations are in parentheses